ST/ Astronomers find that two exoplanets may be mostly water

December 22nd 2022

Space biweekly vol.67, 9th December — 22nd December

article image

TL;DR

  • Astronomers have found evidence that two exoplanets orbiting a red dwarf star are ‘water worlds,’ planets where water makes up a large fraction of the volume.
  • Astronomers took a ‘deep dive’ into one of the first images from NASA’s James Webb Space Telescope and were rewarded with a surprising discovery: telltale signs of two dozen previously unseen young stars about 7,500 light years from Earth.
  • For decades, the Hubble Space Telescope provided us with the most spectacular images of galaxies. This all changed when the James Webb Space Telescope launched and successfully completed commissioning. For astronomers, the universe is now revealed in a new way never imagined by the telescope’s Near-Infrared Camera (NIRCam) instrument.
  • Black holes are surrounded by an invisible layer that swallows every bit of evidence about their past. Researchers are now using machine learning and supercomputers to reconstruct the growth histories of black holes.
  • Researchers have discovered web-like plasma structures in the Sun’s middle corona. The researchers describe their innovative new observation method, imaging the middled corona in ultraviolet (UV) wavelength. The findings could lead to a better understanding of the solar wind’s origins and its interactions with the rest of the solar system.
  • A study finds that, for now, the catalog of known black hole binaries does not reveal anything fundamental about how black holes form. More data will be needed to determine whether the invisible giants arose from a quiet galactic disk or a more dynamic cluster of stars.
  • Morphology of galaxies contain important information about the process of galaxy formation and evolution. With its state-of-the-art resolution, NASA’s James Webb Space Telescope has now captured several red spiral galaxies in its first image at an unprecedented resolution. Researchers have now analyzed these galaxies, revealing that these are among the furthest known spiral galaxies till date. The analysis further detected a passive red spiral galaxy in the early universe, a surprising discovery.
  • When the rover Perseverance landed on Mars, it was equipped with the first working microphone on the planet’s surface. Scientists have used it to make the first-ever audio recording of an extraterrestrial whirlwind.
  • Researchers design and analyze droplet experiments that were done on the International Space Station. The researchers sent four different surfaces with various roughness properties to the station, where they were mounted to a lab table. Cameras recorded the droplets as they spread and merged. The experimental results confirmed and expanded the parameter space of the Davis-Hocking model, a simple way to simulate droplets.
  • A research team has now measured the survival rate of antihelium nuclei from the depths of the galaxy — a necessary prerequisite for the indirect search for Dark Matter.
  • Upcoming industry events. And more!

Space industry in numbers

The global smart space market size is projected to grow from USD 9.4 billion in 2020 to USD 15.3 billion by 2025, at a Compound Annual Growth Rate (CAGR) of 10.2% during the forecast period. The increasing venture capital funding and growing investments in smart space technology to drive market growth.

Analysts at Morgan Stanley and Goldman Sachs have predicted that economic activity in space will become a multi-trillion-dollar market in the coming decades. Morgan Stanley’s Space Team estimates that the roughly USD 350 billion global space industry could surge to over USD 1 trillion by 2040.

Source: Satellite Industry Association, Morgan Stanley Research, Thomson Reuters. *2040 estimates

Space industry news

Latest research

Evidence for the volatile-rich composition of a 1.5-Earth-radius planet

Caroline Piaulet, Björn Benneke, Jose M. Almenara, Diana Dragomir, at al in Nature Astronomy

A team led by UdeM astronomers has found evidence that two exoplanets orbiting a red dwarf star are “water worlds,” planets where water makes up a large fraction of the volume. These worlds, located in a planetary system 218 light-years away in the constellation Lyra, are unlike any planets found in our solar system.

The team, led by PhD student Caroline Piaulet of the Trottier Institute for Research on Exoplanets (iREx) at the Université de Montréal, published a detailed study of a planetary system known as Kepler-138. Piaulet, who is part of Björn Benneke’s research team, observed exoplanets Kepler-138c and Kepler-138d with NASA’s Hubble and the retired Spitzer space telescopes and discovered that the planets — which are about one and a half times the size of the Earth — could be composed largely of water. These planets and a planetary companion closer to the star, Kepler-138b, had been discovered previously by NASA’s Kepler Space Telescope.

Water wasn’t directly detected, but by comparing the sizes and masses of the planets to models, they conclude that a significant fraction of their volume — up to half of it — should be made of materials that are lighter than rock but heavier than hydrogen or helium (which constitute the bulk of gas giant planets like Jupiter). The most common of these candidate materials is water.

“We previously thought that planets that were a bit larger than Earth were big balls of metal and rock, like scaled-up versions of Earth, and that’s why we called them super-Earths,” explained Benneke. “However, we have now shown that these two planets, Kepler-138c and d, are quite different in nature: a big fraction of their entire volume is likely composed of water. It is the first time we observe planets that can be confidently identified as water worlds, a type of planet that was theorized by astronomers to exist for a long time.”

Three-planet photodynamical fit results.

With volumes more than three times that of Earth and masses twice as big, planets c and d have much lower densities than Earth. This is surprising because most of the planets just slightly bigger than Earth that have been studied in detail so far all seemed to be rocky worlds like ours. The closest comparison to the two planets, say researchers, would be some of the icy moons in the outer solar system that are also largely composed of water surrounding a rocky core.

“Imagine larger versions of Europa or Enceladus, the water-rich moons orbiting Jupiter and Saturn, but brought much closer to their star,” explained Piaulet. “Instead of an icy surface, Kepler-138 c and d would harbor large water-vapor envelopes.”

Researchers caution the planets may not have oceans like those on Earth directly at the planet’s surface. “The temperature in Kepler-138c’s and Kepler-138d’s atmospheres is likely above the boiling point of water, and we expect a thick, dense atmosphere made of steam on these planets. Only under that steam atmosphere there could potentially be liquid water at high pressure, or even water in another phase that occurs at high pressures, called a supercritical fluid,” Piaulet said.

Recently, another team at the University of Montreal found another planet, called TOI-1452 b, that could potentially be covered with a liquid-water ocean, but NASA’s James Webb Space Telescope will be needed to study its atmosphere and confirm the presence of the ocean.

In 2014, data from NASA’s Kepler Space Telescope allowed astronomers to announce the detection of three planets orbiting Kepler-138, a red dwarf star in the constellation Lyra. This was based on a measurable dip in starlight as the planet momentarily passed in from of their star, a transit. Benneke and his colleague Diana Dragomir, from the University of New Mexico, came up with the idea of re-observing the planetary system with the Hubble and Spitzer space telescopes between 2014 and 2016 to catch more transits of Kepler-138d, the third planet in the system, in order to study its atmosphere.

While earlier NASA Kepler space telescope observations only showed transits of three small planets around Kepler-138, Piaulet and her team were surprised to find that the Hubble and Spitzer observations suggested the presence of a fourth planet in the system, Kepler-138e. This newly found planet is small and farther from its star than the three others, taking 38 days to complete an orbit. The planet is in the habitable zone of its star, a temperate region where a planet receives just the right amount of heat from its cool star to be neither too hot nor too cold to allow the presence of liquid water.

The nature of this additional, newly found planet, however, remains an open question because it does not seem to transit its host star. Observing the exoplanet’s transit would have allowed astronomers to determine its size. With Kepler-138e now in the picture, the masses of the previously known planets were measured again via the transit timing-variation method, which consists of tracking small variations in the precise moments of the planets’ transits in front of their star caused by the gravitational pull of other nearby planets.

The researchers had another surprise: they found that the two water worlds Kepler-138c and d are “twin” planets, with virtually the same size and mass, while they were previously thought to be drastically different. The closer-in planet, Kepler-138b, on the other hand, is confirmed to be a small Mars-mass planet, one of the smallest exoplanets known to date.

“As our instruments and techniques become sensitive enough to find and study planets that are farther from their stars, we might start finding a lot more water worlds like Kepler-138 c and d,” Benneke concluded.

 

Deep diving off the ‘Cosmic Cliffs’: previously hidden outflows in NGC 3324 revealed by JWST

by Megan Reiter, Jon A Morse, Nathan Smith, Thomas J Haworth, Michael A Kuhn, Pamela D Klaassen in Monthly Notices of the Royal Astronomical Society

Rice University astronomer Megan Reiter and colleagues took a “deep dive” into one of the first images from NASA’s James Webb Space Telescope and were rewarded with the discovery of telltale signs from two dozen previously unseen young stars about 7,500 light years from Earth.

The published research in the December issue of the Monthly Notices of the Royal Astronomical Society offers a glimpse of what astronomers will find with Webb’s near-infrared camera. The instrument is designed to peer through clouds of interstellar dust that have previously blocked astronomers’ view of stellar nurseries, especially those that produce stars similar to Earth’s sun.

Reiter, an assistant professor of physics and astronomy, and co-authors from the California Institute of Technology, the University of Arizona, Queen Mary University in London and the United Kingdom’s Royal Observatory in Edinburgh, Scotland, analyzed a portion of Webb’s first images of the Cosmic Cliffs, a star-forming region in a cluster of stars known as NGC 3324.

“What Webb gives us is a snapshot in time to see just how much star formation is going on in what may be a more typical corner of the universe that we haven’t been able to see before,” said Reiter, who led the study.

The image shows a star-forming region in the constellation Carina known as the Cosmic Cliffs. Many newborn stars in such regions are shrouded in thick clouds of dust. Webb’s infrared camera penetrated the dust, allowing astronomers to discover telltale signs of two dozen infant stars that hadn’t been previously detected. (Image courtesy of NASA, ESA, CSA and STScI)

Located in the southern constellation Carina, NGC 3324 hosts several well-known regions of star formation that astronomers have studied for decades. Many details from the region have been obscured by dust in images from the Hubble Space Telescope and other observatories. Webb’s infrared camera was built to see through dust in such regions and to detect jets of gas and dust that spew from the poles of very young stars.

Reiter and colleagues focused their attention on a portion of NGC 3324 where only a few young stars had previously been found. By analyzing a specific infrared wavelength, 4.7 microns, they discovered two dozen previously unknown outflows of molecular hydrogen from young stars. The outflows range in size, but many appear to come from protostars that will eventually become low-mass stars like Earth’s sun.

“The findings speak both to how good the telescope is and to how much there is going on in even quiet corners of the universe,” Reiter said.

Within their first 10,000 years, newborn stars gather material from the gas and dust around them. Most young stars eject a fraction of that material back into space via jets that stream out in opposite directions from their poles. Dust and gas pile up in front of the jets, which clear paths through nebular clouds like snowplows. One vital ingredient for baby stars, molecular hydrogen, gets swept up by these jets and is visible in Webb’s infrared images.

“Jets like these are signposts for the most exciting part of the star formation process,” said study co-author Nathan Smith of the University of Arizona. “We only see them during a brief window of time when the protostar is actively accreting.”

The accretion period of early star formation has been especially difficult for astronomers to study because it is fleeting — usually just a few thousand years in the earliest portion of a star’s multimillion-year childhood. Study co-author Jon Morse of the California Institute of Technology said jets like those discovered in the study “are only visible when you embark on that deep dive — dissecting data from each of the different filters and analyzing each area alone.

“It’s like finding buried treasure,” Morse said.

Reiter said the size of the Webb telescope also played a role in the discovery. “It’s just a huge light bucket,” Reiter said. “That lets us see smaller things that we might have missed with a smaller telescope. And it also gives us really good angular resolution. So we get a level of sharpness that allows us to see relatively small features, even in faraway regions.”

 

JWST PEARLS. Prime Extragalactic Areas for Reionization and Lensing Science: Project Overview and First Results.

by Rogier A. Windhorst, Seth H. Cohen, Rolf A. Jansen, Jake Summers, et al in The Astronomical Journal

For decades, the Hubble Space Telescope and ground-based telescopes have provided us with spectacular images of galaxies. This all changed when the James Webb Space Telescope (JWST) launched in December 2021 and successfully completed commissioning during the first half of 2022. For astronomers, the universe, as we had seen it, is now revealed in a new way never imagined by the telescope’s Near-Infrared Camera(NIRCam) instrument.

The NIRCam is Webb’s primary imager that covers the infrared wavelength range from 0.6 to 5 microns. NIRCam detects light from the earliest stars and galaxies in the process of formation, the population of stars in nearby galaxies, as well as young stars in the Milky Way and Kuiper Belt objects.

The Prime Extragalactic Areas for Reionization and Lensing Science, or PEARLS, project is the subject of a recent study by a team of researchers, including Arizona State University School of Earth and Space Exploration Regents Professor Rogier Windhorst, Research Scientist Rolf Jansen, Associate Research Scientist Seth Cohen, Research Assistant Jake Summers and Graduate Associate Rosalia O’Brien, along with the contribution of many other researchers. For researchers, the PEARLS program’s images of the earliest galaxies show the amount of gravitational lensing of objects in the background of massive clusters of galaxies, allowing the team to see some of these very distant objects. In one of these relatively deep fields, the team has worked with stunning multicolor images to identify interacting galaxies with active nuclei.

PEARLS NIRCam image of the IRAC Dark Field (JWIDF) Epoch-1 at the north Ecliptic pole. Filter F150W is rendered as blue, F200W as green, and F356W+F444W as red using a log scaling (e.g., Lupton et al. 2004; Coe 2015).

Windhorst and his team’s data show evidence for giant black holes in their center where you can see the accretion disc — the stuff falling into the black hole, shining very brightly in the galaxy center. Plus, lots of galactic stars show up like drops on your car’s windshields — like you’re driving through intergalactic space. This colorful field is straight up from the ecliptic plane, the plane in which the Earth and the moon, and all the other planets, orbit around the sun.

“For over two decades, I’ve worked with a large international team of scientists to prepare our Webb science program,” Windhorst said. “Webb’s images are truly phenomenal, really beyond my wildest dreams. They allow us to measure the number density of galaxies shining to very faint infrared limits and the total amount of light they produce. This light is much dimmer than the very dark infrared sky measured between those galaxies.”

The first thing the team can see in these new images is that many galaxies that were next to or truly invisible to Hubble are bright in the images taken by Webb. These galaxies are so far away that the light emitted by stars has been stretched.

Photo courtesy NASA, ESA, CSA, Rolf A. Jansen (ASU), Jake Summers (ASU), Rosalia O’Brien (ASU), Rogier Windhorst (ASU), Aaron Robotham (UWA), Anton M. Koekemoer (STScI), Christopher Willmer (University of Arizona) and the JWST PEARLS Team; Image processing by Rolf A. Jansen (ASU) and Alyssa Pagan (STScI)

The team focused on the North Ecliptic Pole time domain field with the Webb telescope — easily viewed due to its location in the sky. Windhorst and the team plan to observe it four times.

The first observations, consisting of two overlapping tiles, produced an image that shows objects as faint as the brightness of 10 fireflies at the distance of the moon (with the moon not there). The ultimate limit for Webb is one or two fireflies. The faintest reddest objects visible in the image are distant galaxies that go back to the first few hundred million years after the Big Bang.

For most of Jansen’s career, he’s worked with cameras on the ground and in space, where you have a single instrument with a single camera that produces one image. Now scientists have an instrument that has not just one detector or one image coming out of it, but 10 simultaneously. For every exposure NIRCam takes, it gives 10 of these images. That’s a massive amount of data, and the sheer volume can be overwhelming. To process that data and channel it through the analysis software of collaborators around the globe, Summers has been instrumental.

“The JWST images far exceed what we expected from my simulations prior to the first science observations,” Summers said. “Analyzing these JWST images, I was most surprised by their exquisite resolution.”

Jansen’s primary interest is to figure out how galaxies like our own Milky Way came to be. And the way to do that is by looking far back in time at how galaxies came together, seeing how they evolved, effectively, and so tracing the path from the Big Bang to people like us.

 

“I was blown away by the first PEARLS images,” Jansen said. “Little did I know, when I selected this field near the North Ecliptic Pole, that it would yield such a treasure trove of distant galaxies, and that we would get direct clues about the processes by which galaxies assemble and grow — I can see streams, tails, shells and halos of stars in their outskirts, the leftovers of their building blocks.”

Third-year astrophysics graduate student O’Brien designed algorithms to measure faint light between the galaxies and stars that first catch our eye.

“The diffuse light that I measured in between stars and galaxies has cosmological significance, encoding the history of the universe,” O’Brien said. “I feel fortunate to start my career right now — JWST data is like nothing we have ever seen, and I’m excited about the opportunities and challenges it offers.”

“I expect that this field will be monitored throughout the JWST mission, to reveal objects that move, vary in brightness or briefly flare up, like distant exploding supernovae or accreting gas around black holes in active galaxies,” Jansen said.

 

Trinity I: self-consistently modelling the dark matter halo–galaxy–supermassive black hole connection from z = 0–10

by Haowen Zhang (张昊文), Peter Behroozi, Marta Volonteri, Joseph Silk, Xiaohui Fan, Philip F Hopkins, Jinyi Yang (杨锦怡), James Aird in Monthly Notices of the Royal Astronomical Society

As different as they may seem, black holes and Las Vegas have one thing in common: What happens there stays there — much to the frustration of astrophysicists trying to understand how, when and why black holes form and grow. Black holes are surrounded by a mysterious, invisible layer — the event horizon — from which nothing can escape, be it matter, light or information. The event horizon swallows every bit of evidence about the black hole’s past.

“Because of these physical facts, it had been thought impossible to measure how black holes formed,” said Peter Behroozi, an associate professor at the University of Arizona Steward Observatory and a project researcher at the National Astronomical Observatory of Japan. Together with Haowen Zhang, a doctoral student at Steward, Behroozi led an international team to use machine learning and supercomputers to reconstruct the growth histories of black holes, effectively peeling back their event horizons to reveal what lies beyond.

Simulations of millions of computer-generated “universes” revealed that supermassive black holes grow in lockstep with their host galaxies. This had been suspected for 20 years, but scientists had not been able to confirm this relationship until now.

“If you go back to earlier and earlier times in the universe, you find that exactly the same relationship was present,” said Behroozi, a co-author on the paper. “So, as the galaxy grows from small to large, its black hole, too, is growing from small to large, in exactly the same way as we see in galaxies today all across the universe.”

How it works: Using trial and error, machine learning tests many different pairings of simulated galaxies and black holes created using different rules, and then chooses the pairing that best matches actual astronomical observations. H. Zhang, Wielgus et al. (2020), ESA/Hubble & NASA, A. Bellini

Most, if not all, galaxies scattered throughout the cosmos are thought to harbor a supermassive black hole at their center. These black holes pack masses greater than 100,000 times that of the sun, with some boasting millions, even billions of solar masses. One of astrophysics’ most vexing questions has been how these behemoths grow as fast they do, and how they form in the first place. To find answers, Zhang, Behroozi and their colleagues created Trinity, a platform that uses a novel form of machine learning capable of generating millions of different universes on a supercomputer, each of which obeys different physical theories for how galaxies should form. The researchers built a framework in which computers propose new rules for how supermassive black holes grow over time. They then used those rules to simulate the growth of billions of black holes in a virtual universe and “observed” the virtual universe to test whether it agreed with decades of actual observations of black holes across the real universe. After millions of proposed and rejected rule sets, the computers settled on rules that best described existing observations.

“We’re trying to understand the rules of how galaxies form,” Behroozi said. “In a nutshell, we make Trinity guess what the physical laws may be and let them go in a simulated universe and see how that universe turns out. Does it look anything like the real one or not?”

According to the researchers, this approach works equally well for anything else inside of the universe, not just galaxies. The project’s name, Trinity, is in reference to its three main areas of study: galaxies, their supermassive black holes and their dark matter halos — vast cocoons of dark matter that are invisible to direct measurements but whose existence is necessary to explain the physical characteristics of galaxies everywhere. In previous studies, the researchers used an earlier version of their framework, called the UniverseMachine, to simulate millions of galaxies and their dark matter halos. The team discovered that galaxies growing in their dark matter halos follow a very specific relationship between the mass of the halo and the mass of the galaxy.

“In our new work, we added black holes to this relationship,” Behroozi said, “and then asked how black holes could grow in those galaxies to reproduce all the observations people have made about them.”

“We have very good observations of black hole masses,” said Zhang, the paper’s lead author. “However, those are largely restricted to the local universe. As you look farther away, it becomes increasingly difficult, and eventually impossible, to accurately measure the relationships between the masses of black holes and their host galaxies. Because of that uncertainty, observations can’t directly tell us whether that relationship holds up throughout the universe.”

Trinity allows astrophysicists to sidestep not only that limitation, but also the event horizon information barrier for individual black holes by stitching together information from millions of observed black holes at different stages of their growth. Even though no individual black hole’s history could be reconstructed, the researchers could measure the average growth history of all black holes taken together.

“If you put black holes into the simulated galaxies and enter rules about how they grow, you can compare the resulting universe to all the observations of actual black holes that we have,” Zhang said. “We can then reconstruct how any black hole and galaxy in the universe looked from today back to the very beginning of the cosmos.”

The simulations shed light on another puzzling phenomenon: Supermassive black holes — like the one found in the center of the Milky Way — grew most vigorously during their infancy, when the universe was only a few billion years old, only to slow down dramatically during the ensuing time, over the last 10 billion years or so.

“We’ve known for a while that galaxies have this strange behavior, where they reach a peak in their rate of forming new stars, then it dwindles over time, and then, later on, they stop forming stars altogether,” Behroozi said. “Now, we’ve been able to show that black holes do the same: growing and shutting off at the same times as their host galaxies. This confirms a decades-old hypothesis about black hole growth in galaxies.”

However, the result poses more questions, he added. Black holes are much smaller than the galaxies in which they live. If the Milky Way were scaled down to the size of Earth, its supermassive black hole would be the size of the period at the end of this sentence. For the black hole to double in mass within the same timeframe as the larger galaxy requires synchronization between gas flows at vastly different scales. How black holes conspire with galaxies to achieve this balance is yet to be understood.

“I think the really original thing about Trinity is that it provides us with a way to find out what kind of connections between black holes and galaxies are consistent with a wide variety of different datasets and observational methods,” Zhang said. “The algorithm allows us to pick out precisely those relationships between dark matter halos, galaxies and black holes that are able to reproduce all the observations that have been made. It basically tells us, ‘OK, given all these data, we know the connection between galaxies and black holes must look like this, rather than like that.’ And that approach is extremely powerful.”

 

Direct observations of a complex coronal web driving highly structured slow solar wind

by L. P. Chitta, D. B. Seaton, C. Downs, C. E. DeForest, A. K. Higginson in Nature Astronomy

A team of researchers from Southwest Research Institute (SwRI), NASA and the Max Planck Institute for Solar System Research (MPS) have discovered web-like plasma structures in the Sun’s middle corona. The researchers describe their innovative new observation method, imaging the middled corona in ultraviolet (UV) wavelength, in a new study. The findings could lead to a better understanding of the solar wind’s origins and its interactions with the rest of the solar system.

Since 1995, the U.S. National Oceanic and Atmospheric Administration has observed the Sun’s corona with the Large Angle and Spectrometric Coronagraph (LASCO) stationed aboard the NASA and European Space Agency Solar and Heliospheric Observatory (SOHO) spacecraft to monitor space weather that could affect the Earth. But LASCO has a gap in observations that obscures our view of the middle solar corona, where the solar wind originates.

“We’ve known since the 1950s about the outflow of the solar wind. As the solar wind evolves, it can drive space weather and affect things like power grids, satellites and astronauts,” said SwRI Principal Scientist Dr. Dan Seaton, one of the authors of the study. “The origins of the solar wind itself and its structure remain somewhat mysterious. While we have a basic understanding of processes, we haven’t had observations like these before, so we had to work with a gap in information.”

Magnetic driver of a slow solar wind stream.

To find new ways to observe the Sun’s corona, Seaton suggested pointing a different instrument, the Solar Ultraviolet Imager (SUVI) on NOAA’s Geostationary Operational Environmental Satellites (GOES), at either side of the Sun instead of directly at it and making UV observations for a month. What Seaton and his colleagues saw were elongated, web-like plasma structures in the Sun’s middle corona. Interactions within these structures release stored magnetic energy propelling particles into space.

“No one had monitored what the Sun’s corona was doing in UV at this height for that amount of time. We had no idea if it would work or what we would see,” he said. “The results were very exciting. For the first time, we have high-quality observations that completely unite our observations of the Sun and the heliosphere as a single system.”

Global magnetic skeleton and coronal structures based on 3D MHD simulations.

Seaton believes these observations could lead to more comprehensive insights and even more exciting discoveries from missions like PUNCH (Polarimeter to Unify the Corona and Heliosphere), an SwRI-led NASA mission that will image how the Sun’s outer corona becomes the solar wind.

“Now that we can image the Sun’s middle corona, we can connect what PUNCH sees back to its origins and have a more complete view of how the solar wind interacts with the rest of the solar system,” Seaton said. “Prior to these observations, very few people believed you could observe the middle corona to these distances in UV. These studies have opened up a whole new approach to observing the corona on a large scale.”

 

Spin it as you like: The (lack of a) measurement of the spin tilt distribution with LIGO-Virgo-KAGRA binary black holes

by Salvatore Vitale, Sylvia Biscoveanu, Colm Talbot in Astronomy & Astrophysics

Clues to a black hole’s origins can be found in the way it spins. This is especially true for binaries, in which two black holes circle close together before merging. The spin and tilt of the respective black holes just before they merge can reveal whether the invisible giants arose from a quiet galactic disk or a more dynamic cluster of stars.

Astronomers are hoping to tease out which of these origin stories is more likely by analyzing the 69 confirmed binaries detected to date. But a new study finds that for now, the current catalog of binaries is not enough to reveal anything fundamental about how black holes form. MIT physicists show that when all the known binaries and their spins are worked into models of black hole formation, the conclusions can look very different, depending on the particular model used to interpret the data. A black hole’s origins can therefore be “spun” in different ways, depending on a model’s assumptions of how the universe works.

“When you change the model and make it more flexible or make different assumptions, you get a different answer about how black holes formed in the universe,” says study co-author Sylvia Biscoveanu, an MIT graduate student working in the LIGO Laboratory. “We show that people need to be careful because we are not yet at the stage with our data where we can believe what the model tells us.”

The study’s co-authors include Colm Talbot, an MIT postdoc; and Salvatore Vitale, an associate professor of physics and a member of the Kavli Institute of Astrophysics and Space Research at MIT.

Posterior for cosτ (top panel) and differential merger rate per unit cosτ (bottom panel) obtained using the Isotropic + Gaussian model when the mean of the Gaussian component is allowed to vary in the range μ ∈ [ − 1, 1].

Black holes in binary systems are thought to arise via one of two paths. The first is through “field binary evolution,” in which two stars evolve together and eventually explode in supernovae, leaving behind two black holes that continue circling in a binary system. In this scenario, the black holes should have relatively aligned spins, as they would have had time — first as stars, then black holes — to pull and tug each other into similar orientations. If a binary’s black holes have roughly the same spin, scientists believe they must have evolved in a relatively quiet environment, such as a galactic disk.

Black hole binaries can also form through “dynamical assembly,” where two black holes evolve separately, each with its own distinct tilt and spin. By some extreme astrophysical processes, the black holes are eventually brought together, close enough to form a binary system. Such a dynamical pairing would likely occur not in a quiet galactic disk, but in a more dense environment, such as a globular cluster, where the interaction of thousands of stars can knock two black holes together. If a binary’s black holes have randomly oriented spins, they likely formed in a globular cluster.

But what fraction of binaries form through one channel versus the other? The answer, astronomers believe, should lie in data, and particularly, measurements of black hole spins. To date, astronomers have derived the spins of black holes in 69 binaries, which have been discovered by a network of gravitational-wave detectors including LIGO in the U.S., and its Italian counterpart Virgo. Each detector listens for signs of gravitational waves — very subtle reverberations through space-time that are left over from extreme, astrophysical events such as the merging of massive black holes. With each binary detection, astronomers have estimated the respective black hole’s properties, including their mass and spin. They have worked the spin measurements into a generally accepted model of black hole formation, and found signs that binaries could have both a preferred, aligned spin, as well as random spins. That is, the universe could produce binaries in both galactic disks and globular clusters.

“But we wanted to know, do we have enough data to make this distinction?” Biscoveanu says. “And it turns out, things are messy and uncertain, and it’s harder than it looks.”

Marginalized posterior for the branching ratio of the isotropic component — 𝔦 — for all of the uncorrelated two-component models.

In their new study, the MIT team tested whether the same data would yield the same conclusions when worked into slightly different theoretical models of how black holes form. The team first reproduced LIGO’s spin measurements in a widely used model of black hole formation. This model assumes that a fraction of binaries in the universe prefer to produce black holes with aligned spins, where the rest of the binaries have random spins. They found that the data appeared to agree with this model’s assumptions and showed a peak where the model predicted there should be more black holes with similar spins. They then tweaked the model slightly, altering its assumptions such that it predicted a slightly different orientation of preferred black hole spins. When they worked the same data into this tweaked model, they found the data shifted to line up with the new predictions. The data also made similar shifts in 10 other models, each with a different assumption of how black holes prefer to spin.

“Our paper shows that your result depends entirely on how you model your astrophysics, rather than the data itself,” Biscoveanu says.

“We need more data than we thought, if we want to make a claim that is independent of the astrophysical assumptions we make,” Vitale adds.

Just how much more data will astronomers need? Vitale estimates that once the LIGO network starts back up in early 2023, the instruments will detect one new black hole binary every few days. Over the next year, that could add up to hundreds more measurements to add to the data.

“The measurements of the spins we have now are very uncertain,” Vitale says. “But as we build up a lot of them, we can gain better information. Then we can say, no matter the detail of my model, the data always tells me the same story — a story that we could then believe.”

 

Red Spiral Galaxies at Cosmic Noon Unveiled in the First JWST Image

by Yoshinobu Fudamoto, Akio K. Inoue, Yuma Sugahara in The Astrophysical Journal Letters

Spiral galaxies represent one of the most spectacular features in our universe. Among them, spiral galaxies in the distant universe contain significant information about their origin and evolution. However, we have had a limited understanding of these galaxies due to them being too distant to study in detail. “While these galaxies were already detected among the previous observations using NASA’s Hubble Space Telescope and Spitzer Space Telescope, their limited spatial resolution and/or sensitivity did not allow us to study their detailed shapes and properties,” explains Junior Researcher Yoshinobu Fudamoto from Waseda University in Japan, who has been researching galaxies’ evolution.

Now, NASA’s James Webb Space Telescope (JWST) has taken things to the next level. In its very first imaging of the galaxy cluster, SMACS J0723.3–7327, JWST has managed to capture infrared images of a population of red spiral galaxies at an unprecedented resolution, revealing their morphology in detail!

Against this backdrop, in a recent article, a team of researchers comprising Junior Researcher Yoshinobu Fudamoto, Prof. Akio K. Inoue, and Dr. Yuma Sugahara from Waseda University, Japan, has revealed surprising insights into these red spiral galaxies. Among the several red spiral galaxies detected, the researchers focused on the two most extremely red galaxies, RS13 and RS14. Using spectral energy distribution (SED) analysis, the researchers measured the distribution of energy over wide wavelength range for these galaxies. The SED analysis revealed that these red spiral galaxies belong to the early universe from a period known as the “cosmic noon” (8–10 billion years ago), which followed the Big Bang and the “cosmic dawn.” Remarkably, these are among the farthest known spiral galaxies till date.

Rare, red spiral galaxies account for only 2% of the galaxies in the local universe. This discovery of red spiral galaxies in the early universe, from the JWST observation covering only an insignificant fraction of space, suggests that such spiral galaxies existed in large numbers in the early universe.

The researchers further discovered that one of the red spiral galaxies, RS14, is a “passive” (not forming stars) spiral galaxy, contrary to the intuitive expectation that galaxies in the early universe would be actively forming stars. This detection of a passive spiral galaxy in the JWST’s limited field of view is particularly surprising, since it suggests that such passive spiral galaxies could also exist in large numbers in the early universe.

As a remarkable improvement over previous IRAC image (above), JWST’s unprecedented spatial resolution and high IR sensitivity reveals the morphological details of the red spiral galaxies (below) RS13 and RS14. This facilitates a detailed analysis revealing hitherto unknown features of red spiral galaxies belonging to the early universe.

Overall, the findings of this study significantly enhances our knowledge about red spiral galaxies, and the universe as a whole.

“Our study showed for the first time that passive spiral galaxies could be abundant in the early universe. While this paper is a pilot study about spiral galaxies in the early universe, confirming and expanding upon this study would largely influence our understanding of the formation and evolution of galactic morphologies,” concludes Fudamoto.

 

The sound of a Martian dust devil

by Murdoch, N., Stott, A.E., Gillier, M. et al. in Nature Communications

When the rover Perseverance landed on Mars, it was equipped with the first working microphone on the planet’s surface. Scientists have used it to make the first-ever audio recording of an extraterrestrial whirlwind.

The study was published by planetary scientist Naomi Murdoch and a team of researchers at the National Higher French Institute of Aeronautics and Space and NASA. Roger Wiens, professor of earth, atmospheric and planetary sciences in Purdue University’s College of Science, leads the instrument team that made the discovery. He is the principal investigator of Perseverance’s SuperCam, a suite of tools that comprise the rover’s “head” that includes advanced remote-sensing instruments with a wide range of spectrometers, cameras and the microphone.

“We can learn a lot more using sound than we can with some of the other tools,” Wiens said. “They take readings at regular intervals. The microphone lets us sample, not quite at the speed of sound, but nearly 100,000 times a second. It helps us get a stronger sense of what Mars is like.”

Acoustic data during a dusty vortex encounter.

The microphone is not on continuously; it records for about three minutes every couple of days. Getting the whirlwind recording, Wiens said, was lucky, though not necessarily unexpected. In the Jezero Crater, where Perseverance landed, the team has observed evidence of nearly 100 dust devils — tiny tornadoes of dust and grit — since the rover’s landing. This is the first time the microphone was on when one passed over the rover. The sound recording of the dust devil, taken together with air pressure readings and time-lapse photography, help scientists understand the Martian atmosphere and weather.

“We could watch the pressure drop, listen to the wind, then have a little bit of silence that is the eye of the tiny storm, and then hear the wind again and watch the pressure rise,” Wiens said. It all happened in a few seconds. “The wind is fast — about 25 miles per hour, but about what you would see in a dust devil on Earth. The difference is that the air pressure on Mars is so much lower that the winds, while just as fast, push with about 1% of the pressure the same speed of wind would have back on Earth. It’s not a powerful wind, but clearly enough to loft particles of grit into the air to make a dust devil.”

The rover’s Navigation Camera (Navcam) observations of the direct dust devil encounter.

The information indicates that future astronauts will not have to worry about gale-force winds blowing down antennas or habitats — so future Mark Watneys won’t be left behind — but the wind may have some benefits. The breezes blowing grit off the solar panels of other rovers — especially Opportunity and Spirit — may be what helped them last so much longer.

“Those rover teams would see a slow decline in power over a number of days to weeks, then a jump. That was when wind cleared off the solar panels,” Wiens said.

The lack of such wind and dust devils in the Elysium Planitia where the InSIght mission landed may help explain why that mission is winding down.

“Just like Earth, there is different weather in different areas on Mars,” Wiens said. “Using all of our instruments and tools, especially the microphone, helps us get a concrete sense of what it would be like to be on Mars.”

 

Coalescence-induced droplet spreading: Experiments aboard the International Space Station

by J. McCraney, J. Ludwicki, J. Bostwick, S. Daniel, P. Steen in Physics of Fluids

Understanding how water droplets spread and coalesce is essential for scenarios in everyday life, such as raindrops falling off cars, planes, and roofs, and for applications in energy generation, aerospace engineering, and microscale cell adhesion. However, these phenomena are difficult to model and challenging to observe experimentally.

Researchers from Cornell University and Clemson University designed and analyzed droplet experiments that were done on the International Space Station.

Droplets usually appear as small spherical caps of water because their surface tension exceeds gravity.

“If the drops get much larger, they begin to lose their spherical shape, and gravity squishes them into something more like puddles,” said author Josh McCraney of Cornell University. “If we want to analyze drops on Earth, we need to do it at a very small scale.”

But at small scales, droplets dynamics are too fast to observe. Hence, the ISS. The lower gravity in space means the team could investigate larger droplets, moving from a couple millimeters in diameter to 10 times that length.

Side perspective of drop coalescence event on S1 surface from initial profile t = 0 s up to CL pinning t = 0.63 s. The apparent “snow-caps” atop the drops are substrate-edge reflections from the rear viewing light, which are exaggerated by the massive drop size.

The researchers sent four different surfaces with various roughness properties to the ISS, where they were mounted to a lab table. Cameras recorded the droplets as they spread and merged.

“NASA astronauts Kathleen Rubins and Michael Hopkins would deposit a single drop of desired size at a central location on the surface. This drop is near, but not touching, a small porthole pre-drilled into the surface,” said McCraney. “The astronaut then injected water through the porthole, which collects and essentially grows an adjacent drop. Injection continues until the two drops touch, at which point they coalesce.”

Resonant droplet motions were used to measure the wetting properties on the ISS, as described by the advancing (a) and receding (b) CLs with (c) and (d) corresponding image edge detection for surface S3.

The experiments aimed to test the Davis-Hocking model, a simple way to simulate droplets. If a droplet of water sits on a surface, part of it touches the air and creates an interface, while the section in contact with the surface forms an edge or contact line. The Davis-Hocking model describes the equation for the contact line. The experimental results confirmed and expanded the parameter space of the Davis-Hocking model. As the original principal investigator of the project, the late professor Paul Steen of Cornell University had written grants, traveled to collaborators worldwide, trained doctoral students, and meticulously analyzed related terrestrial studies, all with the desire to see his work successfully conducted aboard the ISS. Tragically, Steen died only months before his experiments launched.

“While it’s tragic he isn’t here to see the results, we hope this work makes him and his family proud,” said McCraney.

 

Measurement of anti-3He nuclei absorption in matter and impact on their propagation in the Galaxy

by S. Acharya et al. . in Nature Physics

How are galaxies born, and what holds them together? Astronomers assume that dark matter plays an essential role. However, as yet it has not been possible to prove directly that dark matter exists. A research team including Technical University of Munich (TUM) scientists has now measured for the first time the survival rate of antihelium nuclei from the depths of the galaxy — a necessary prerequisite for the indirect search for Dark Matter.

Many things point to the existence of dark matter. The way in which galaxies move in galactic clusters, or how fast stars circle the center of a galaxy results in calculations which indicate that there must be far more mass present than what we can see. Approximately 85 percent of our Milky Way for example consists of a substance which is not visible and which can only be detected based on its gravitational effects. As of today it has still not been possible to directly prove the existence of this material.

Several theoretical models of dark matter predict that it could be composed of particles which interact weakly with one another. This produces antihelium-3 nuclei, which consist of two antiprotons and one antineutron. These nuclei are also generated in high-energy collisions between cosmic radiation and common matter like hydrogen and helium — however, with energies different from those that would be expected in the interaction of dark matter particles.

In both processes, the antiparticles originate in the depths of the galaxy, several tens of thousands of lightyears away from us. After their creation, a part of them makes its way in our direction. How many of these particles survive this journey unscathed and reach the vicinity of the Earth as messengers of their formation process determines the transparency of the Milky Way for antihelium nuclei. Until now scientists have only been able to roughly estimate this value. However, an improved approximation of transparency, a unit of measure for the number and energies of antinuclei, will be important for interpreting future antihelium measurements.

Description of the steps followed for the extraction of σinel(3He)

Researchers from the ALICE collaboration have now carried out measurements that have enabled them to determine the transparency more precisely for the first time. ALICE stands for A Large Ion Collider Experiment and is one of the largest experiments in the world to explore physics on the smallest length scales. ALICE is part of the Large Hadron Collider (LHC) at CERN.

The LHC can generate large amounts of light antinuclei such as antihelium. To do so, protons and lead atoms are each put on a collision course. The collisions produce particle showers which are then recorded by the detector of the ALICE experiment. Thanks to several subsystems of the detector, the researchers can then detect the antihelium-3 nuclei that have formed and follow their trails in the detector material. This makes it possible to quantify the probability that an antihelium-3 nucleus will interact with the detector material and disappear. Scientists from TUM and the Excellence Cluster ORIGINS have contributed significantly to the analysis of the experimental data.

Schematic of 3He production and propagation in our Galaxy.

Using simulations, the researchers were able to transfer the findings from the ALICE experiment to the entire galaxy. The result: About half of the antihelium-3 nuclei which were expected to be generated in the interaction of dark matter particles would reach the vicinity of the Earth. Our Milky Way is thus 50 percent permeable for these antinuclei. For antinuclei generated in collisions between cosmic radiation and the interstellar medium, the resulting transparency varies from 25 to 90 percent with increasing antihelium-3 momentum. However, these antinuclei can be distinguished from those generated from dark matter based on their higher energy.

This means that antihelium nuclei can not only travel long distances in the Milky Way, but also serve as important informants in future experiments: Depending on how many antinuclei arrive at the Earth and with which energies, the origin of these well-travelled messengers can be interpreted as cosmic rays or dark matter thanks to the new calculations.

Upcoming Events

Jan 15 Washington Strategic Leadership Conference

Feb 7–9 SmallSat Symposium 2023

Feb 21–23 Small Satellites and Services International Forum

March 13–16 SATELLITE Conference & Exhibition

March 16–19 International Space Convention 2023

Apr 24 International Summit on Lasers, Optics & Photonics

Subscribe to Paradigm!

Medium. Twitter. Telegram. Telegram Chat. Reddit. LinkedIn.

Main sources

Research articles

Nature Astronomy

The Astrophysical Journal

Science Daily

Space News

Tags

Space
Astronomy
Exoplanets
NASA
JWST
Black holes